Diversified and Accurate Recommendations for a Series of Users

Jongjin Kim
Seoul National University
Seoul, Korea
j2kim99@smu.ac.kr

U Kang
Seoul National University
Seoul, Korea
ukang@smu.ac.kr

ABSTRACT
When we sequentially recommend top-k items to users, how can we recommend them diversely while maintaining accuracy? Aggregate-level diversity is an important topic to maximize the potential profit of platforms by exposing a variety of items. However, existing sequentially diversified recommender systems ignore the order of users and assume that all recommendations happen at once. In reality, users receive recommendations sequentially so later users’ information is not given during serving former users.

In this work, we propose the problem of sequentially diversified recommendation and SAPID to address the problem. SAPID removes the popularity bias from the model through a negative sampling mechanism based on temporal popularities. Then, SAPID decides which items to recommend immediately or later according to their estimated exposure opportunities. Extensive experiments show that SAPID shows the state-of-the-art performance in real-world datasets by achieving up to 4.25 times higher accuracy and up to 3.92% increased diversity compared to the best competitor.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
diversified recommendation, sequential recommendation, aggregate-level diversity

ACM Reference Format:

1 INTRODUCTION
When we sequentially recommend top-k items to users, how can we increase the diversity among the items while maintaining the accuracy? Recommender systems become an essential element for users to discover items to consume [5, 7, 11]. Hence, it is important to expose as many products as possible to improve the total profit of the platform [2, 4]. Aggregately diversified recommender systems try to address this problem [1, 3, 6, 9, 10, 12]. However, these studies do not consider the order of recommendations and assume that all recommendations happen at once. In reality, the order of recommendations must be considered since users do not simultaneously receive recommendations. Thus, a recommender system cannot access the recommendation results for future users in advance.

We propose the problem of sequentially diversified recommendation to consider the order of recommendations. Figure 1 shows the example. Three users sequentially receive recommendations (I) and (II). Both results achieve the highest accuracy, but result (II) achieves higher diversity than result (I). This is because the result (I) recommends items that latter users would prefer, leading to duplicate recommendations. The sequentially diversified recommendation aims to maximize both accuracy and diversity as in the result (II). Thus, it is important to distinguish between the items to be recommended now and those to be recommended later.

In this paper, we propose SAPID (Sequentially Diversified Recommendation via Popularity Debiasing and Item Distribution), an effective method for the sequentially diversified recommendation. SAPID removes the popularity bias from the model by temporal popularity-based negative sampling scheme. Then, SAPID recommends items that would not have a chance to be recommended later to improve diversity. Extensive experiments in 4 real-world datasets show that SAPID achieves up to 4.25 times higher accuracy and up to 3.92% increased diversity compared to the best competitor. The code and datasets are available at https://github.com/SAPID24/SAPID.

2 PROBLEM FORMULATION
Problem 1 (Sequentially Diversified Recommendation): Assume that a session is a sequence of user-item interactions for a single user with timestamps. For the set \(U \) of users, the sessions \(S_1, \ldots, S_{|U|} \) are given and sorted in their last interactions’ time order. Each session is provided sequentially to perform a recommendation, one at a time. The problem is to recommend a list \(R_u \) of \(k \) items for each session \(S_u \) that are most likely to appear next in the session while maximizing both the accuracy and the aggregate-level diversity.

Note that the recommender system needs to generate \(R_u \) as soon as \(S_u \) is provided. Thus, it is crucial to consider the future demand for items and decides which items to recommend immediately and which ones to reserve for each user to recommend to.
3 PROPOSED METHOD

In this section, we propose SAPID (Sequentially Diversified Recommendation via Popularity Debiasing and Item Distribution), an effective approach for the sequentially diversified recommendation. Figure 2 shows the overall process of SAPID. In the training phase, SAPID carefully trains a sequential recommendation model not to be biased. Then, SAPID recommends items that contribute to the diversity the most in the recommendation phase.

Training Phase. How can we eliminate the popularity bias introduced by the skewed distribution during the model training process? The BPR loss in recommendation model training aims to maximize the difference between the recommendation scores of positive samples and randomly chosen negative samples [13]. However, this approach leads to the popularity bias in the model, as lesser-known items are underestimated, which results into the poor diversity of recommendation.

Our approach to address this issue is reducing the frequency of lesser-known items being chosen as negative samples to mitigate the popularity bias. SAPID calculates the temporal popularity P_{pop} of negative items for a session S by counting all interactions of users and items not included in S that happened between the first interaction of the session and the last interaction of the session. Let P_{uni} be the uniform distribution for all items not included in S.

Then, the probability distribution P_S for each item to be selected as a negative sample for the session S is defined as Equation (1), where α is a hyperparameter which ranges from 0 to 1.

$$P_S = \alpha P_{pop} + (1 - \alpha) P_{uni}$$ \(1\)

Recommendation Phase. How can we maintain the accuracy while increasing the diversity of recommendation results? SAPID utilizes the reranking method [1, 3, 6, 12] to maintain accuracy. SAPID first constructs the candidate item pool of size k to recommend by gathering highly ranked items, where c is a hyperparameter. Then, SAPID judges how much an item contributes to diversity by counting its expected number of being recommended. Finally, SAPID recommends items with the least expected number of being recommended from the candidate pool.

To calculate the expected number $E_u(i)$ of recommendations for item i calculated when recommending to the u-th user, SAPID sums 1) the number of times the item has been recommended for the previous sessions and 2) the estimated number of times it will be recommended for the remaining sessions. We assume that the recommendation rate of each item for future users is proportional to its popularity. Thus, $E_u(i)$ is defined as follows:

$$E_u(i) = C(i) + (|U| - u)k \times p_i$$ \(2\)

where $C(i)$ is the current count of recommendations for item i, and p_i is the frequency rate of item i.

4 EXPERIMENT

We perform experiments to prove that SAPID achieve higher diversity while sacrificing lesser accuracy compared to competitors.

We use four real-world datasets of sequential recommendation as summarized in Table 1. We use SASRec [8], a widely used sequential recommendation models as our base models for experiments. We compare SAPID with two aggregately diversified recommendation methods: Kwon et al [1] and Ulmatch [3]. We employ a leave-one-out protocol and remove the last interaction of each user to construct the training data. We report 5-fold harmonic nDCG to measure the accuracy and entropy to measure the diversity.

Figure 3 shows the results. SAPID shows the best accuracy and diversity among competitors in all cases, which proves the effectiveness of SAPID for sequentially diversified recommendation.

5 CONCLUSION

In this paper, we propose the problem of sequentially diversified recommendation, an important problem to maximize the potential profit of e-commerce platforms. We also propose SAPID, an effective method for the problem. SAPID removes the popularity bias of the base model by adjusting the negative sampling probability. Then, SAPID decides which items to recommend immediately or later based on their potential chances to be exposed later. SAPID shows the state-of-the-art performance in real-world datasets by achieving up to 4.25 times higher accuracy and up to 3.92% increased diversity compared to the best competitor.
REFERENCES

